
LEARNING LOCAL NEIGHBOURHOODS
The Local Neighbourhood Learning Algorithm (Local-NL) tackles the need for agents to be able 
to adapt their connectivity and knowledge of other agents within the system to find sub-spaces 
that allow completion of a composite task. Using an extension of Q-learning, agents learn utilities 
of the range of actions available to them. They then have the choice of taking an action that will 
exploit their current local neighbourhood of other agents, bringing them closer to task comple-
tion, explore the neighbourhood to optimise their requests of other agents, or reshape the neigh-
bourhood altogether. Altering the neighbourhood topology will bring in connections to new agents 
that may open up more optimal actions. However, due to resource constraints this comes at the 
cost of the loss of knowledge of some of the previous sub-space.

PRIORITISATION BY FUNCTIONAL APPROXIMATION
Approaching the communication challenge from the opposite perspective, here agents learn to 
prioritise their responses to requests to optimse sub-task completion. The Multi-Channel Priority 
Optimisation through Function Approximation Algorithm (MC-POFA) allows agents to flexibly pri-
oritise actions to satisfy responses in a way that preserves knowledge over incoming channels 
and shrink or grow the function approximations capacity to handle a broad spectrum of request 
demand. The adaptive capacity functionality is a cornerstone of the agents learning scalability, 
ensuring it can focus on a manageable subset of prioritisations when placed in a highly commu-
nicative environment.

Learning Local Neighbourhoods in Multi-Agent Systems

In systems with a large number of agents there are fundamental pressures on the centralised coor-
dination techniques used to provide inter-communication, task orchestration, and routing of messag-
es. As the scale of interacting components expands, we reach resource constraint plateaus, where 
computation, storage, or communication pathways become saturated. At these points we must de-
compose each agents functionality into a number of specialisms that can then be taken up by other 
agents, at the cost of even more orchestration communications and synchronisation to provide this 
distributed functionality. To provide solutions to tackle these issues we focus on distributed agent sys-
tems where reinforcement learning behaviours are constrained by resource usage limits and hence 
by local neighbourhood awareness rather than global system knowledge. 
 
In this work we develop algorithms for autonomous intelligent agents within a distributed multi-agent 
system that enable agents to learn and repeatedly adapt a subset of state-action space while also 
exploiting it to achieve a goal.Through the investigation of these systems we also provide some in-
sight and define concepts that illustrate the behaviours of agents under these conditions that prove 
useful to build further contributions, including the use of constrained local neighbourhoods as units of 
scalability in large distributed systems. 

Self-organisation of autonomous intelligent agents through local neighbourhoods of connectivity and knowledge 

ENVIRONMENTAL SENSOR NETWORKS
We target combining all these elements into a generic universal agent system that can be applied to 
real-world problems in a highly adaptive way. This will be simulated as an Environmental-Wireless 
Sensor Network (E-WSN) application in a harsh environment where resilience and self-organisation 
will be key to success and feasibility. To make the simulation realistic, we focus on long-term monitor-
ing of radioactivity where conditions preclude human interference and will degrade agents in the field 
such as that of Chernobyls radioactive contamination. With a UAV deploying a large number of sen-
sors over a disperse and remote geographical area, leading to a relatively ad-hoc, randomised place-
ment of devices, using solar power cells to maintain enough energy to power themselves over a num-
ber of years. 

Figure 2: The average aggregating agent return times for datasets. Simulations show an approximately a 40% drop in the request durations as the agents react to 
rewards, explore their state-action spaces, and learn to adapt their local neighbourhoods to give increasingly performant links to the needed data.

Figure 7c: Agents gain knowledge of the system 
space and form links to new agents.

Figure 1: Local neighbourhood adaptation allows an agent to learn better connectivity and other agents to collaborate with within the system space to achieve the 
sub-tasks it needs them to achieve to accomplish its overall goal.

ENVIRONMENT SIGNAL Q-TRANSFORMATIONS
We tackle the problem of driving behavioural change of agents dependent on how well its per-
forming through the Relative Environmental Signals Q-Transformation Algorithm (RES-QT). 
At a high level this algorithm generates an agent-specific internal metric based on a combina-
tion of its rewards and the entropy of its learned knowledge over its current state-action space. 
The internal reward signal is compared against similar metrics collected from the agents local 
neighbourhood through informational communications. This then allows the transformation of an 
agents state-action space Q-values based on the agents view of its relative performance, driving 
risk-taking or conservative behaviours in response its belief in its success.

Figure 6: Relative Environmental Signals Q-Transformation Algorithm (RES-QT) uses metrics aggregated from the other agents in the local neighbourhood compared 
with an agents own internal metric to give the relative environment signal used to generate the Q-value transformation function that adapts the agents behaviours

RISK-ACTION PROBABILITIES
The Reward Trends for Risk-Action Probabilities (RT-RAP) algorithm we introduce combines a 
relative performance metric for an agent and a transformation function for its role to generate be-
haviours that dynamically alter its exploration and optimisation strategy.  This allows an agent to 
use a comparison of its current learning policies performance against its historical reward trends 
to optimise and exploit subspaces of the systems state-action space without losing their flexbility 
to adapt in the face of variations and system disruption. This functionality is crucial to the agents 
ability to find an optmisation solution within the system, without it the agent will make too many 
changes to its connectivity and knowledge of other agents to realistically find exploitable knowl-
edge within the system.

Figure 3: Adaptation actions in state-action space. Taking a state-action space altering action opens up new areas for exploration and exploitation, however, resource 
constraints mean that the loss of knowledge previously accumulated is inevitable. 

Figure 4: Use of channel-states mapped to function approximations for MC-POFA. Updates on a channels functional approximation weightings are used to update 
an aggregated functional approximation that is the basis for active prioritisation.

Figure 5:  The prioritisation of certain data pieces is shown as the ones actively requested are increased in priority by varying amounts, dependent on the accumulated re-
wards obtained by the agent in responding to that particular request set. 

Figure 7b: Adaptation of each agents local neighbourhood as they 
individually react to device failures.

Figure 7a: The highly radioactive isotope caesi-
um-137 has a half-life of around 30 years.
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